
Integrating Ooni with mlab-ns
This document lays out the components required for integrating mlab-ns with Ooni. It also describes who
will be responsible for which parts.

Components

Backend Script
The backend script pulls the required information out of the ooni-backend installed to an M-Lab slice. It will
be used by Nagios to obtain the information. Nagios will insert that information into mlab-ns.

Least Authority will partially complete this script. Our goal is to make the script obtain the information and
feed it directly to our mock mlab-ns (see the section below). The script will have to be modified by the
M-Lab team so that the information goes into Nagios instead.

Bouncer Script
The bouncer script runs periodically (cron job) on the slice hosting the Ooni bouncer. It pulls the aggregate
of all information from the backend scripts, and provides that information to the bouncer so that it can be
combined into a single configuration file.

Least Authority will partially complete this script. We will write it so that it works against our mock mlab-ns,
freely assuming the required modifications to mlab-ns will be made. The M-Lab team may need to modify
the script if mlab-ns is not modified as planned.

Mock mlab-ns
The mock mlab-ns will serve as our development / testing platform, since we cannot make modifications
to the real mlab-ns. It will provide just two APIs:

• One API that accepts information from the backend scripts and stores it internally. This API will not
be implemented in the real mlab-ns, but instead is a placeholder for the Nagios collection that we
leave to M-Lab engineers.

• Another API that, when queried, returns a list of information about all Ooni backends. This API will be
implemented in the real mlab-ns, so we will try to make it behave as similar to the real mlab-ns will as
possible. Ideally, once the modifications are made to mlab-ns, it should just be a matter of changing
the URL in the script.

Information
An unresolved question is: Which information needs to go in mlab-ns. We have several proposals for this,
in order from "best engineering practice", to "dirty ooni-specific hack."

Proposal #1: Arbitrary Data
In this proposal, Nagios would accept an arbitrary string from the backend script, insert it into mlab-ns,
and then mlab-ns will be modified so that it's possible to query for a list of all Ooni backends and their
associated arbitrary data. This is nice, because the modifications to mlab-ns are simple (it doesn't need to
understand the arbitrary data), and it will be useful for all future experiments running on M-Lab, not just
Ooni.



Proposal #2: Complete Information, but mlab-ns parses it
In this proposal, Nagios would parse out the separate fields of information from the backend script, and
mlab-ns would be made to understand them all. The information required, with their associated data
types, is, for each backend:

• A .onion address (string).

• A list of supported test helpers (list of string).

• A list of test helpers (each a name string, IP address, and port number).

This is not ideal because mlab-ns would have Ooni-specific modifications, that aren't useful for future
experiments.

Proposal #3: Limited Data for First Deployment
Another option is a "hack" which would allow Ooni to be deployed with just one test helper, and just one
collector policy. Nagios would have to insert into mlab-ns the following information:

• One .onion address. The list of supported test helpers will be assumed to be just the HTTP return
headers test.

• One IP address. It will be assumed that on port 80 an HTTP return headers test is running.

This would be adequate for the first deployment, but it is obviously not sustainable and does not allow
Ooni to grow. We believe that implementing this and Proposal #1 would incur a similar cost, so we prefer
Proposal #1.


	Components
	Backend Script
	Bouncer Script
	Mock mlab-ns

	Information
	Proposal #1: Arbitrary Data
	Proposal #2: Complete Information, but mlab-ns parses it
	Proposal #3: Limited Data for First Deployment


