
Application-layer Characterization and Traffic
Analysis for Encrypted QUIC Transport Protocol

Qianqian Zhang and Chi-Jiun Su
Advanced Development Group, Hughes Network Systems, Germantown, MD, USA

Emails: {Qianqian.Zhang,Chi-Jiun.Su}@hughes.com.

Abstract—Quick UDP Internet Connection (QUIC) is an emerg-
ing end-to-end encrypted, transport-layer protocol, which has
been increasingly adopted by popular web services to improve
communication security and quality of experience (QoE) towards
end-users. However, this tendency makes the traffic analysis more
challenging, given the limited information in the QUIC packet
header and full encryption on the payload. To address this
challenge, a novel rule-based approach is proposed to estimate
the application-level traffic attributes without decrypting QUIC
packets. Based on the size, timing, and direction information,
our proposed algorithm analyzes the associated network traffic
to infer the identity of each HTTP request and response pair, as
well as the multiplexing feature in each QUIC connection. The
inferred HTTP attributes can be used to evaluate the QoE of
application-layer services and identify the service categories for
traffic classification in the encrypted QUIC connections.

I. INTRODUCTION

Passive monitoring over the network traffic is essential for
Internet service providers (ISPs) and network operators to
perform a wide range of network operations and management
activities [1]. Given the monitored network status, ISPs can
adjust the capacity planning and resource allocation to ensure
a good quality of experience (QoE). Network monitoring also
facilitates intrusion detection and expedites troubleshooting to
guarantee a stable service connectivity for the customers. Due
to the lack of access to user applications, devices, or servers,
passive monitoring is generally challenging. As concerns on the
privacy violation continually grow, popular applications start
to adopt encrypted protocols. For example, most prominent
web-based services apply hypertext transfer protocol secure
(HTTPS) to protect the security for bi-directional communi-
cations between the Internet users and servers. Consequently,
encryption on the one hand protects users’ privacy, but also
disables the current network management mechanisms for QoE
monitoring and optimization.

Among all current efforts to incorporate encryption, a new
transport-layer protocol, called Quick UDP Internet Connec-
tions (QUIC), has emerged to improve communication security
and QoE for end-users [2]. QUIC is a UDP-based, reliable,
multiplexed, and fully-encrypted protocol. As a user-space
transport, QUIC can be deployed as part of various applications
and enables iterative changes for application updates. Com-
pared with Transmission Control Protocol (TCP), QUIC uses a
cryptographic handshake that minimizes handshake latency, and
eliminates head-of-line blocking by using a lightweight data
structure called streams, so that QUIC can multiplex multiple

requests/responses over a single connection by providing each
with its own stream ID, and therefore loss of a single packet
blocks only streams with data in that packet, but not others in
the same QUIC connection. HTTP-over-QUIC is standardized
as HTTP/3 and attracted wide interest from the industry [3].
Historical trend in [4] shows that over 7% of websites are
already using QUIC, and QUIC is expected to grow in the
mobile networks and satellite communication systems.

Compared with other encryption technologies, QUIC brings
tougher challenges on passive traffic monitoring. For example,
TCP header provides useful information, including flags and
sequence number, which enable ISPs to inspect the TCP
communication status. However, the encryption applied to the
QUIC headers leaves very limited information to infer their
connection states. Meanwhile, in the satellite-based network
systems, TCP traffic is usually optimized with Performance En-
hancing Proxies (PEPs) [5]. However, QUIC’s end-to-end en-
cryption disables PEP optimizations, which results in an under-
performance, compared with TCP PEP, even with QUIC’s fast
handshake. To address the aforementioned challenges, several
recent works in [3] and [6]–[12] have studied the passive
monitoring over encrypted network traffic. Authors in [6] and
[7] investigated the HTTP request and response identification
for the application-layer characterization. However, both ap-
proaches only support the TCP protocol, which cannot be easily
extended to QUIC, due to the limited information in the QUIC
transport header. Previous works in [8] and [9] focused on the
QUIC traffic analysis for website fingerprinting and traffic clas-
sification. However, both analytic results relied on large-scale
statistics of IP packets, but failed to extract the application-
layer attributes. To infer the application-level information, the
authors in [3] and [10]–[12] studied the network monitoring for
HTTP-based encrypted traffic, including both TCP and QUIC.
Although these works successfully modeled the application-
layer QoE for video applications, their approaches cannot be
applied to other types of web services, such as web browsing
or bulk traffic. Therefore, existing literature shows distinct
limitations in terms of QUIC traffic analysis on estimating the
application-layer attributes.

The main contribution of this work is, thus, a novel rule-
based general-purpose framework to explore the application-
level traffic attributes without using any decryption towards
QUIC header or payloads, for various web services. Our key
contributions include:

ar
X

iv
:2

31
0.

10
67

6v
1 

 [
cs

.C
R

] 
 1

0 
O

ct
 2

02
3

{Qianqian.Zhang, Chi-Jiun.Su}@hughes.com


• Based on the size, timing, and direction information visible
in the encrypted QUIC packet, our proposed algorithm
analyzes the associated network traffic to infer the at-
tributes of each HTTP request and response pair, including
the start and end time, size, request-response association,
and multiplexing feature in each QUIC connection. Once
HTTP multiplexing is detected, several requests will be
matched as a group with their corresponding responses,
to form a super HTTP request-response pair.

• The proposed algorithm supports both online and offline
estimations for HTTP request-response pairs over QUIC
protocol. In the online setting, the real-time traffic is
processed by a three-module state machine to determine
the instant status of the HTTP request-response commu-
nication. In the offline setting, we consider all QUIC
packets at the end of the connection, where the proposed
approach first infers the packets corresponding to client
requests, and then identifies server’s responses, and finally,
pairs each request with its associated response, given the
network-dependent constraints of inter-packet time and
round-trip time (RTT).

• The proposed algorithm can identify QUIC control mes-
sages versus HTTP request/response data packets. To
avoid overestimation of HTTP request/response size, a dy-
namic threshold on the QUIC packet length is designed to
filter out the acknowledgment packets, setting packets and
control information in the HTTP traffic when estimating
the HTTP request/response data objects. Meanwhile, the
proposed algorithm can handle special features in QUIC
protocol, such as 0-RTT request.

• The proposed algorithm can be applied to different ap-
plications, including video traffic, website browsing, in-
teractive web traffic, such as user login authentication,
and bulk traffic for file upload and download. We tested
our algorithm under various network conditions, given
different maximum transfer size (MTU) and RTT, and the
proposed approach gives highly accurate estimation results
in both terrestrial and satellite network systems.

The rest of this paper is organized as follows. Section II
provides the system overview. The algorithm design , including
request estimation, response estimation, and request-response
match models, is given in Section III. In Section IV, the
performance evaluations are presented, and Section V discusses
the limitation and future work. In the end, Section VI draws
the conclusion.

II. SYSTEM ARCHITECTURE

In this section, we first define the input and output of
the traffic monitoring task, and provide a system overview
of the QUIC characterization algorithm. As shown in Fig. 1,
we consider a passive monitoring module implemented at a
middlebox between the client and server. The middlebox should
be able to perceive complete bi-directional traffic without any
omission. For example, to observe the traffic of a user, the
module can be placed at the user’s network access point,

Fig. 1: Passive monitoring the bi-directional QUIC packets at a
middlebox to infer the application-layer metrics.

while to study the traffic for a cluster of clients, the algorithm
can be implemented at the network gateway. Relying on the
discriminative attributes that is visible in the encrypted QUIC
packets, we aim to identify each HTTP pair or HTTP object,
consisting of an HTTP request and its corresponding response,
which contains key information for the passive monitor to infer
the application-layer characterization.

A. Input features

Useful information in the encrypted QUIC packets mainly
comes from the network layer and transport layer, including
the source and destination IP addresses, source and destination
port numbers, packet length, and the limited header information
that is still visible in the encrypted packet. Meanwhile, packet
arrival time and packet position in the sequence of a QUIC flow
can also provide essential information for our application-layer
characterization. In order to support a real-time estimation, the
input features require only the information of individual QUIC
packets. In our proposed approach, no window-based feature
or large-scale statistical analysis is required. If needed, the
window-based feature can be calculated in the post-processing
stage using our estimation results.

In the network trace, each QUIC connection can be iden-
tified by 6-tuples, i.e., source IP, destination IP, source port,
destination port, protocol, and QUIC connection ID. Within a
connection, a sequence of bi-directional QUIC packets with
their timing and length information can be observed, and the
network operator can extract a small set of features from
the network and transport layer headers as the input for the
application characterization algorithm, which includes QUIC
header type, QUIC packet length, packet arrival time, and
packet order and position, for upstream and downstream
traffic, separately. The definition of each input and the reason
for choosing these features are given as follows.

1) QUIC header type: A QUIC packet has either a long or
a short header. The most significant bit of a QUIC packet is
the Header Form bit, which is set to 1 for long headers, and
0 for short headers. This header type is always available in
the encrypted QUIC packets and stays invariant across QUIC
versions [13]. The long header is used in the handshake stage
to expose necessary information for version negotiation and



Fig. 2: Time and length information of each QUIC packet forms the input to estimate HTTP requests and responses.

Fig. 3: 1-RTT handshake and HTTP transmission.

establishment of 1-RTT keys between two ends. Therefore, the
header type provides key information on whether handshake
is finished or not. Except for 0-RTT resumption, most of the
HTTP requests and responses occur only after the handshake
is finished. Thus, once a QUIC packet with short header is
observed in newly-built QUIC connection, soon the HTTP
request and response packets are expected to arrive.

2) QUIC packet length: The QUIC packet size can be used
to infer whether a QUIC packet contains HTTP data content.
First, let us define what an HTTP data packet is. Typically,
HTTP communications follow a pattern of client’s request first,
and then server’s response. Thus, the QUIC protocol for HTTP
web applications always uses client-Initiated bidirectional
stream [14], with a stream ID that is a multiple of four in
decimal, i.e., 0, 4, 8, and etc. And the corresponding response
will be transmitted over the stream with the same ID as its
request. In this work, we call the client-Initiated bidirectional
stream as data stream, and all the other kinds as non-data
stream. Although the stream ID can provide accurate informa-
tion to identify HTTP request and response, this information
is encrypted and invisible at the middlebox. Therefore, to
distinguish the QUIC packet with data content, we must rely
on the explicit information, such as the QUIC packet length.

After the handshake stage, a QUIC packet with HTTP data
content usually has a larger length, compared with non-data
packets. For example, acknowledgment (ACK) is a common

type of QUIC frames which usually has a much shorter size.
Thus, by setting a proper threshold to the QUIC packet length,
it is possible to filter out non-data packets. Considering a QUIC
packet from the server to the client, if its length is smaller than
the threshold Lresp ∈ Z+, then we consider this packet as non-
HTTP-response packet, and exclude it from forming the input
features of the estimation algorithm. A typical value of response
length threshold is Lresp = 35 bytes. Note that, throughout this
paper, the packet length specifically denotes the overall size of
a QUIC packet in bytes.

3) Packet arrival time: The packet arrival time can be
used to tell whether two packets belong to the same HTTP
object, and whether a QUIC connection is still active. First,
an HTTP response usually consists of multiple packets. When
two sequential packets are transmitted from the server to the
client, the middlebox needs to tell whether they belong to the
same response or not. Thus, a threshold is applied to their
inter-arrival time. For example, if the inter-arrival time of two
response packets is less than a threshold ∆Tresp, then these two
packets belong to the same HTTP response; Otherwise, they
are associated with two different responses. A typical value for
∆Trespe is one RTT, and a similar threshold ∆Treq is applied to
consolidate or separate request packets.

Second, given a detected request and an estimated response,
we need to know whether they are associated HTTP request-
response pair. Here, we propose a necessary requirement, where
the time difference between the first response packet and the
first request packet must be greater than one RTT, but smaller
than 20 RTTs. If this requirement is not satisfied, then the
request and response are not an associated HTTP pair. Instead,
they should belong to different HTTP request-response pairs.

Furthermore, in a QUIC connection, if there is no packet
transmission in any direction for more than 20 RTTs, then, we
consider the QUIC connection as idle. In the idle state, before
any new request is observed, all response packets from the
server to the client will be disgarded.

4) Packet order and position: The packets’ positions in the
sequence of QUIC flow can provide guidelines for a middlebox
to form HTTP request-response pairs, as shown in Fig. 2. For
example, an HTTP response usually consists of multiple QUIC
packets with a noticeable pattern. Based on our observation,
the first response packet usually has a length that is slightly
smaller than MTU size; then, the response is followed with a
sequence of multiple MTU-sized packets; finally, the response



TABLE I: Input features

Input features Purposes

Packet direction Separate request and response packets.

QUIC Header type Check whether handshake is finished.

QUIC Packet length Check whether a QUIC packet contains HTTP
request or response data.

Packet arrival time Check whether two packets belong to the same
object, whether an HTTP request is associated
with a response, and whether a QUIC connection
is still active.

Packet position and
order

Build HTTP request-response pairs from a se-
quence of individual QUIC packets.

ends with a packet with much smaller size. The cause for this
special pattern is that the response data content can have a
much larger size than one MTU’s payload, therefore the content
will be separated into multiple data frames and transmitted via
multiple QUIC packets. The slightly small length of the first
response packet is caused by the combination of control frame
and data frame into one UDP payload, while the last packet
contains the left-over response content in this transmission
which is usually much less than one MTU. Note that, this
pattern is an empirical summary based on our observation and
experience, which may not be always true. Later, we will apply
this rule as a baseline to design the estimation algorithm with
further details to cope with exceptions, such as the first response
packet has a MTU length, or the last packet has a larger size.
Therefore, based on the pattern, we can consolidate responses
from a sequence of individual response packets, together with
the requirement of inter-arrival time threshold, to form a HTTP
response object. A similar pattern can be observed in the HTTP
request as well. However, since most of HTTP requests have
very limited content, whose size is smaller than MTU, thus,
most of the HTTP requests consist of a single packet with
length smaller than MTU but greater than the request length
threshold Lreq ∈ Z+.

Till now, we have introduced four types of inputs, and the
rational for choosing these features is summarized in Table I.

B. Output metrics

Given the input features, we aim to design a rule-based
algorithm to estimate the object-level HTTP request-response
information, and the connection-level QUIC link information,
by passively monitoring the encrypted packet sequences.

1) HTTP object level output: An HTTP pair consists of an
HTTP request and its corresponding HTTP response. For the
request part, our designed algorithm will output the start time,
size, and the number of request packets in the estimated HTTP
request. Similarly, the response output metrics include the start
time, end time, size, and the number of response packets in the
HTTP response. The reason to exclude the request end time
from the output metric is the fact that most HTTP requests
consist of single-packet, thus, the end time of a request usually
coincides its start time.

TABLE II: Output metrics

Output type Estimated output

Request start time

Request size

Number of request packets

Response start time

Object-level Response end time

Response size

Number of response packets

Number of individual HTTP request-response pairs

Max length of last ten ACK packets

Connection start time

Connection duration

Total request size

Total response size

Connection-level Total number of request packets

Total number of response packets

Number of individual HTTP request-response pairs

Number of estimated HTTP objects

Level of multiplexing

Since QUIC protocol supports HTTP request and response
multiplexing by creating multiple streams in the same connec-
tion, thus, we will see in Fig. 4 that before the transmission
of an existing HTTP response is finished, another request can
be sent from the client to server using a new stream ID. In
the case of multiplexing, the sequence of request or response
packets belonging to different HTTP objects may be interleaved
with each other, thus, it might be impossible to separate the
packets for each individual HTTP object, based on their length
and timing information only. In this case, we will group the
interleaved HTTP request-response objects together to form a
super HTTP object. And, the output meaning of an estimated
super object changes slightly, where the request (or response)
start time is the time stamp of the first request (or response)
packet in the super object, the response end time is the time
stamp of the last response packet, the request (or response) size
is the total size of all request (or response) packets in the super
object, and the request (or response) packet number is also the
total number of all request (or response) packets. Moreover, the
number of HTTP pairs denotes the number of individual HTTP
request-response pairs grouped in the super object, and only in
the case of multiplexing, this value is greater than one. When
HTTP multiplexing happens, the response estimation can be
very confusing, but the request detection is still reliable, thus
the number of detected requests is counted to represent the
number of individual HTTP pairs in the super object.

Lastly, the length of the ACK packets contains meaningful
information for packet filtering. If a packet loss is detected at
the client side and the lost packet contains key information that
requires re-transmission, then the client will inform the server
with the loss information by sending an ACK packet. If the



Fig. 4: HTTP request-response multiplexing.

number of lost packets keeps increasing, the ACK frame needs
to contain more information, which yields an increased packet
length. Therefore, by monitoring the ACK packet length in a
real-time manner, the passive observer can accurately determine
the threshold for the HTTP data packets, and filter out the non-
date frames properly. Usually, we keep the length information
of the last ten ACK packets for both directions.

2) QUIC connection level output: Once a QUIC connection
has been quiet for more than 20 RTTs, we consider it as
inactive, and the overall HTTP transmission will be summarized
into a QUIC-connection output, and after that, all memory for
this connection will be cleared. The connection-level output is
shown in Table II, where the connection start time is the times-
tamp of the first packet from client to server, the connection
duration is the time different between the first packet to the last
over the QUIC connection, the total request (or response) size is
the length sum of all HTTP request (or response) data packets,
the total number of request (or response) packets counts the
number of all HTTP request (or response) packets in the QUIC
connection, the number of individual HTTP pairs equals to
the number of detected requests, and the number of estimated
HTTP objects equals to the number of object-level outputs
estimated within this QUIC connection. For example, in Fig. 4,
the number of individual HTTP pairs is three, while the number
of estimated HTTP objects is only one, due to multiplexing,
and in Fig. 3, the number of individual HTTP pairs and the
number of estimated objects both equal to two. In the end,
we define the level of multiplexing as the ratio of the number
of individual HTTP pairs to the number of estimated HTTP
objects. The value of the multiplexing level ranges in [1, Nreq],
where Nreq ∈ Z+ denotes the maximum number of individual
HTTP pairs that our algorithm can tolerant in each super object.
When multiplexing happens, the level of multiplexing is greater
than one; otherwise, its value equals to one. Here, the level of
multiplexing helps a network operator to classify the traffic
category of a QUIC connection. For example, a web-browsing
link usually has a higher multiplexing level than a video link.
Key information of object-level and connection-level outputs is
summarized in Table II.

Fig. 5: 0-RTT connection resumption.

III. ALGORITHM AND APPROACHES

In this section, we aim to design a rule-based algorithm so
that given the input features in Table I, we can estimate the out-
put metrics in Table II. To this end, we design a state machine
with three modules, where the request estimation module infers
the client requests, the response estimation module consolidates
the QUIC packets into server’s responses, and a match module
pairs the estimated requests with their corresponding responses,
under the network-dependent constraints of inter-arrival time
and RTT. Furthermore, to extend the application range and
increase the robustness of our algorithm, three supporting
modules are introduced to automatically adjust the threshold for
data packet size, detect the MTU size, and estimate the value of
RTT, respectively, so that the proposed algorithm supports an
accurate estimation in various network systems under different
communication conditions.

A. Request estimation

In the QUIC protocol, a special features, called 0-RTT
connection resumption, is shown in Fig. 5. Assume a client
and a server had previously established a QUIC connection,
then when a new connection is needed, client can send ap-
plication data with the first packet of Client Hello and reuse
the cached cryptographic key from previous communications.
Notably this allows the client to compute the private encryption
keys required to protect application data before talking to
the server, thus successfully reduces the latency incurred in
establishing a new connection. Thus, in the case of 0-RTT
resumption, the HTTP request and response can happen before
the handshake is finished, and a special detection mechanism
is needed to infer the 0-RTT request packets. Given a QUIC
packet with a long header, the third and fourth significant bits
in the header indicate the type of this packet. If the type field
shows (0x01), then the packet is a 0-RTT packet [14]. Next,
to determine whether a 0-RTT packet contains HTTP request
data, we propose three criteria: First, a 0-RTT request has
usually a single packet; Second, the length of a 0-RTT request
packet often ranges within [100, 1000]; Third, there is only one
QUIC packet in the UDP payload. If all above requirements
are satisfied, we can say that this 0-RTT packet is a 0-RTT
request, otherwise, this 0-RTT packet is more likely to contain
control information, other than HTTP request data. Again, these



Fig. 6: State machine for request estimations, where -1 is initial state,
0 is idle state, 0.5 is waiting state, and 1 is transmission state. Once
the algorithm comes to state -0.5 or state 0, a request is estimated and
will be given to the match module.

criteria are empirical, which may not always be true. However,
according to our observation and experience, the criteria lead
to a high accuracy to estimate 0-RTT requests.

Once handshake is finished, QUIC packets will start to use
short headers, which do not have a packet-type field anymore.
But, similar to 0-RTT requests, request after handshake requires
only one QUIC packet in the UDP payload. Meanwhile, the
length of a request packet ranges between Lreq and LMTU, where
Lreq is the length threshold for request packets, and LMTU is
the size of MTU. In general, the MTU value LMTU is network
and device dependent with a value range of [1200, 1360].
Meanwhile, the value of Lreq is dynamic over time. When we
are inferring for the first packet of the first request, the request
size threshold is set as Lreq = 100 bytes. Then once the first
request packet has been detected, the value of Lreq is adjusted
to 50 bytes. Later, as the HTTP request transmission continues,
Lreq will be dynamically adjusted based on the real-time traffic
conditions. Details for adjusting Lreq will be shown in Section
III-D1.

Given that an HTTP request consists of either a single packet
or multiple packets, in order to consolidate a sequence of
request packets into a group of request objects, we design a
request estimation algorithm with a state machine shown in
Fig. 6. When the client sends the first Initial Hello packet to the
server, a state machine is initialized for the QUIC connection
with an initial state −1. During the handshake stage, if a 0-
RTT request is detected, the algorithm goes to state −0.5. As
long as the algorithm comes to state −0.5, a 0-RTT request
will be output, and the estimated 0-RTT request will be given
to the match module. On the other hand, if no 0-RTT request is
found, the state will stay at −1, until handshake is finished and
a new request packet is detected. If the new request packet has
a length greater than LMTU − 8, then we consider its as a large
packet, and the algorithm will move to state 0.5. Otherwise, if
the packet’s length ranges in [Lreq, LMTU − 8], we consider it a
small request packet, and the algorithm comes to state 0.

State 0.5 is a waiting state, where we need the information of

Fig. 7: State machine for response estimation, where -1 is initial state,
0 is idle state, 0.5 is waiting-to-start state, 1 is transmission state, and
1.5 is waiting-to-end state. Once the algorithm comes to state 0, a
response is estimated and will be given to the match module.

the next request packet to determine whether we are estimating
a single-packet or multi-packet request. Therefore, at state 0.5,
if we receive a large packet within one RTT, then, the current
request is a multi-packet request, and more packets belonging to
the same request might arrive soon, thus, the algorithm moves
to the transmission state 1; otherwise, if we receive another
small packet at state 0.5, the estimated request consists of two
packets, and the algorithm goes to state 0, and outputs the
estimated request. Meanwhile, if no new packet arrives within
one RTT, then it is a single-packet request. Thus, the algorithm
moves to state 0, and outputs the single-packet request. State 0
is an idle state, meaning no on-going transmission at this stage.
At state 0, if a large request packet comes, the algorithm moves
to state 0.5 to wait for more packets. Otherwise, the algorithm
will output a single-packet request, and stays at state 0. Lastly,
state 1 is a transmission state, meaning a multi-packet request
is transmitting a sequence of MTU-sized packets. At state 1,
if the arrived packet has a MTU-size, then transmission is on-
going and the algorithm stays at state 1. If the new packet has a
length smaller than MTU, then the transmission of the current
request is done, so the algorithm moves to state 0, and outputs
the estimated multi-packet request.

In summary, the request estimation module monitors all
QUIC packets from client to server, processes the header, time,
length, and order information of each packet, and outputs the
estimated request to the match module.

B. Response estimation

Similar to the request packet, an HTTP response packet
usually has only one QUIC packet in the UDP payload, and
the response packet length ranges between [Lresp, LMTU], where
Lresp is a dynamic threshold with the initial value of Lresp = 35,
and the updating rule will be shown in Section III-D1. To
consolidate individual packets into HTTP responses, a response
estimation algorithm is designed in Fig. 7. Initially, when no
request is detected, the response module stays at state −1.
When at least one request and a new response packet are
detected, the algorithm moves to state 1 if the response packet



size is larger than LMTU − 8, or the algorithm moves to state
0.5 if the packet length between [Lresp, LMTU − 8].

State 0.5 is a wait-to-start state, meaning after receiving a
small packet, we need to see the next packet to determine
whether it is a single-packet or multi-packet response. There-
fore, at state 0.5, if a large packet arrives within one RTT,
the algorithm will move to state 1; if a small response packet
arrives within one RTT, the algorithm stays at state 0.5, and
groups the received small packets into one object. Due to
different implementations, some servers may start the multi-
packet response with more than one non-MTU packets. If no
packet arrives during one RTT, the algorithm moves to state
0, and output an estimated response. State 0 is an idle state,
meaning no transmitting response. At state 0, if a large response
packet comes, the algorithm moves to state 1. Otherwise, the
algorithm comes to state 0.5. State 1 is a transmission state,
meaning a multi-packet response is transmitting a sequence of
MTU-sized packets. At state 1, if the arrival packet has a MTU-
size, then the response transmission continues and the module
stays at state 1. Otherwise, the transmission finishes and the
algorithm moves to state 1.5.

Lastly, state 1.5 is a wait-to-end state. Due to re-transmission,
an HTTP response can end with multiple small packets. There-
fore, at state 1, if the middlebox observes a small packet, it
waits at state 1.5 for one RTT, during which if more small
packets arrive, the algorithm consolidates these small packets
with the previous MTU sequence to form one response, and
stays at the state 1.5 until one-RTT timeout. If no packet arrives
within one RTT, the response transmission is finished, and the
module moves to state 0 to output the estimated response.
However, if a large packet arrives within one RTT, then we
realize that the previous response has finished, and a large
packet belonging to a new response is received. In this case, the
algorithm first moves to state 0, output a response consisting
of all packets but not including the last one, then, the newly-
arrived large packet will start another response estimation, and
move the algorithm to state 1.

Thus, the response estimation module monitors all QUIC
packets from server to client, processes the header, time, length,
and order information of each encrypted packet, and outputs the
estimated response to the match module.

C. Request-response matching

Given the estimated requests and responses, the final step
is to match each request and its corresponding response to
form an HTTP pair, a.k.a. HTTP object. A state machine of the
matching module is given in Fig. 8, which takes the estimated
HTTP requests and responses as input and outputs the object-
level HTTP information. Initially, before receiving any request,
the match module will ignore all response inputs and stay
at state −1. After the first request is received, the algorithm
comes to state 1. The definition for state 1 is that the number
of requests is greater than the number of responses, meaning
that some HTTP requests have been sent out, but not all of
their responses are received, therefore the algorithm waits at

Fig. 8: State machine for match module, where -1 is initial state, 0
is idle state, 1 is waiting-for-response state, and 2 is waiting-to-output
state. Once the algorithm moves over a double-line arrow, an HTTP
request-response pair is estimated.

state 1 for more responses to finish the request-response match.
Once the match module receives enough responses so that the
number of requests becomes less than or equal to the number of
responses, it moves to state 2. However, at state 1, if no request
or response is received within 20 RTTs, then the match module
is timeout, and the algorithm moves to state 0 to output an
HTTP object consisting of all received requests and responses.

State 2 means the match module has received at least equal
numbers of requests and responses, which is enough for one-
to-one request-response match. However, at this moment, it is
uncertain whether there will be more response objects coming,
due to re-transmission and mis-estimation. Thus, the module
waits at state 2 for one RTT. Any new response arrives within
one RTT will be added into the current HTTP object. If no
new response arrives within one RTT, the current module is
timeout, and moves to state 0 to output the estimated HTTP
object. If any new request is received at state 2, it will be hold
until timeout, to form the next HTTP object. Lastly, state 0 is
the idle state, in which all responses will be discarded, and if
a request is received, the match module moves to state 1.

The match module takes all estimated requests and responses
as input, and generates the HTTP request-response objects as
output, while the connection-level output can be calculated,
combing all estimated object-level information.

D. Supporting modules

To enable the proposed algorithm to work in different net-
works under various communication conditions, three support-
ing modules are introduced to adjust key parameters.

1) Dynamic threshold of data packet length: For the request
data packet, the initial length threshold is Lreq = 50, i.e., a
QUIC packet from the client to server with a length smaller than
50 bytes will be considered as a non-data packet. Generally,
it is easy, using Lreq, to detect the non-data packet with a
fixed or typical length, such as control frame. However, for
ACK packets with variant sizes, a dynamic threshold is needed.
Assume the downstream from server to client experiences
packet loss, the client will inform the server with the packet
missing information in the ACK packet. If the number of lost
response packets keeps increasing, the ACK packet size from



TABLE III: Performance summary

Dataset Match Request start Request size Response start Response end Response size
accuracy time error accuracy time error time error accuracy

Comcast, Chrome, small-scale 96% 0 99% ≤ 20% RTT 50% RTT 97%

Youtube HughesNet, Chrome, small-scale 95% ≤ 1% RTT 98% ≤ 15% RTT ≤ 10% RTT 98%

HughesNet, Firefox, small-scale 92% ≤ 10% RTT 95% ≤ 15% RTT ≤ 10% RTT 99%

HughesNet, Chrome, large-scale 94% ≤ 15% RTT 96% ≤ 25% RTT ≤ 20% RTT 97%

Google Comcast, Chrome, small-scale 93% ≤ one RTT 97% ≤ 50% RTT ≤ one RTT 95%

drive HughesNet, Chrome, small-scale 96% ≤ 10% RTT 91% ≤ 10% RTT ≤ 15% RTT 99%

login HughesNet, Firefox, small-scale 99% ≤ 10% RTT 99% ≤ 10% RTT ≤ 15% RTT 91%

Google Comcast, Chrome, small-scale 87% ≤ 1% RTT 85% ≤ 5% RTT ≤ 1% RTT 94%

drive HughesNet, Chrome, small-scale 88% ≤ 50% RTT 89% ≤ 50% RTT ≤ 50% RTT 85%

download HughesNet, Firefox, small-scale 85% 0 99% ≤ 10% RTT ≤ 5% RTT 99%

Google Comcast, Chrome, small-scale 93% 10 RTTs 78% 3 RTTs one RTT 97%

drive HughesNet, Chrome, small-scale 96% ≤ 50% RTT 77% ≤ 20% RTT ≤ 30% RTT 99%

upload HughesNet, Firefox, small-scale 92% ≤ 50% RTT 75% ≤ 10% RTT ≤ 1% RTT 99%

Facebook/ Comcast, Chrome, small-scale 100% 0 100% ≤ 5% RTT 0 99%

Instagram/ HughesNet, Chrome, small-scale 100% 0 97% ≤ 15% RTT ≤ 20% RTT 99%

Google HughesNet, Firefox, small-scale 97% 0 99% ≤ 20% RTT ≤ 10% RTT 94%

the client to server will become larger. Once ACK length comes
to 50 bytes, the initial threshold Lreq can no longer work.

Since the ACK packet size increases gradually, we can track
the length change and adjust the threshold accordingly. For ex-
ample, over a QUIC connection, once ten non-data packets have
been detected, the middlebox can take the maximum length of
the last ten small-sized packets as lmax

ack = max{l1ack, · · · , l10ack},
and adjust the request threshold by Lreq = lmax

ack + 10. In the
following communication, the maximum length of the latest ten
non-data packets lmax

ack will be updated for every detected non-
data packet, and the request threshold is updated accordingly.
A similar rule applies to the response packet length, where
the initial threshold is Lresp = 35; after ten non-data response
packets are detected, the response threshold is updated by
the maximum length of the latest ten non-data packets, plus
ten bytes. Based on our analysis, the proposed scheme shows
almost 100% accuracy to separate the ACK packets from the
data packets for both QUIC request and response estimations.

2) Auto-detection for MTU size: The MTU size of both
QUIC and UDP packets depends on the network setting, server
implementation, and client device type. Therefore, MTU can
take different values for different QUIC connections, or over
the same connection but in different communication directions.
The auto-detection algorithm for MTU size is designed as
follows: The initial MTU-value for QUIC packets is set to be
LMTU = 1200. Next, for each packet, the MTU value will
be updated by taking the maximum out of the length of the
new packet and the current MTU value. In most cases, the
MTU values for both directions over a QUIC connection can
be accurately detected within the handshake stage.

3) RTT estimation: As shown both in Fig. 3 and Fig. 5,
the QUIC handshake stage requires the client to starts with
a Client Hello packet, and then, the server will reply with
Server Hello. This round-trip pattern during the handshake
stage provides a chance for RTT estimation. Especially when

the QUIC connection is established without previous memory,
handshake stage usually involves more than one round-trip, then
the value of RTT can be calculated by averaging the time spent
over these round-trips during handshake.

IV. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of the proposed
algorithm, using the QUIC trace collected from various network
environments. In particular, we applied Chrome and Firefox as
client browsers on both Windows and Linux operation systems,
over HughesNet satellite system and Comcast terrestrial system,
to collect QUIC traces for video traffic, web-browsing, user
login authentication, file upload, and download traffic.

In the small-scale collection, we used Wireshark to man-
ually collect QUIC traffic, and decrypted packets by setting
the SSLKEYLOGFILE environment variable. For the large-
scale collection, we applied Puppeteer as a high-level API to
control Chrome and play Youtube videos following some given
playlists, and used tcpdump to collect packet-level QUIC trace.
The large-scale dataset is limited to web browsing and video
traffic from Youtube, over HughesNet satellite system, using
Chrome as browser in the client-side Linux operation system.
We run the large-scale data collection continuously for 11 days
from Feb 9 to Feb 20, 2023, resulting in over 1, 000 times of
video plays with over 11, 000 TCP connections and 18, 000
QUIC connections between our client browser with over 400
server IP addresses.

Table III shows the evaluation performance results over the
small-scale Comcaset dataset, small-scale HughesNet dataset
over Chrome and Firefox, and large-scale HughesNet dataset
for Youtube traffic, respectively. First, our algorithm yields a
high matching accuracy of over 85%, for all types of web
traffic, in all environment settings. In the request estimation,
other than the upload traffic, the proposed method shows an
accurate estimation result, where the request start time error is



smaller than one RTT, and the request size accuracy is higher
than 85%. Different from other traffic types with small-sized
requests and large-sized responses, the file upload shows a
reversed pattern, where the traffic from client to server is much
more than the data from server to client. This uncommon
pattern results in a lower accuracy of 75% in the request
size estimation, and up to 10 RTTs error in the request start
time estimation. In our future work, we will further refine
the algorithm design, by adding more waiting states in the
request state machine, to improve the request estimation for
bulk upload traffic. Similarly, the response estimation shows
a satisfied result of time error small than one RTT, and size
accuracy of over 85%, for all web services under all settings,
except for bulk upload.

Note that, compared with the terrestrial Comcast network,
the satellite system has a much larger RTT due to the long prop-
agation distance between the ground terminal/gateway and the
geostationary satellite. Therefore, the evaluation results prove
that our proposed algorithm can work in various networks while
guaranteeing an accurate estimation result. Furthermore, due to
the limited space, Table III only shows six key performance
metrics from Table II, for online estimation only. Note that,
the offline algorithm yields a similar estimation accuracy, and
the other performance metrics also show satisfied results.

V. LIMITATION AND FUTURE WORK

Given the empirical nature of the proposed algorithm, one
limitation of our work is the performance degradation in face
of excess packet loss. Massive packet loss yields a lot of data
re-transmission, so that the typical transmission pattern cannot
be recognized; also, the ACK packets with large sizes will be
confused with the data packets, even with a dynamic length
threshold. Meanwhile, the proposed algorithm only provides
a coarse-grained estimation for interleaved HTTP request-
response objects, since as an ISP with limited information
visible in the encrypted QUIC packets, it is impossible to
distinguish individual request-response pairs using interleaved
timeline with length and order information only. Thus, grouping
the multiplexed objects into a super HTTP object is the best
estimation we could make. Furthermore, if client or server
implementations apply padding as a countermeasure of traffic
analysis, then the length of all QUIC packets will be MTU. In
this case, our proposed algorithm might fail, given only time
and order information available.

In the future work, we will apply the estimated object-level
and connection-level HTTP information for network operation
and management, including the traffic classification and QoE
estimation. For example, different web traffics have distinct
HTTP patterns, where a video connection requests content
data periodically resulting in a clear and separable request-
response pattern as shown in Fig. 3, while a web-browsing
connection requests different types of content at the same
time, inducing interleaved requests and responses. Such pattern
difference enables the ISPs to classify each QUIC connection
into different application categories. Moreover, the application-

layer information can be applied to infer the user’s QoE over
the encrypted QUIC connection. For example, the download
rate per object can be calculated by response size over response
duration, and the time-to-first-byte can be evaluated via the
estimated request start time and the response start time.

VI. CONCLUSION

In this work, we have analyzed the characteristics of QUIC
traffic, by passively monitoring the QUIC encrypted packets
to infer the application-layer attributes. To this end, we have
studied the rationale of QUIC protocol design, and summarized
the key pattern for HTTP request and response communications
over QUIC protocol. By carefully choosing the time and size
features which are still visible in the encrypted QUIC packets,
we have designed a novel rule-based algorithm to estimate the
attributes of HTTP requests and responses. The performance
evaluation showed satisfactory results in different network
systems for various web applications.

REFERENCES

[1] I. Akbari, M. A. Salahuddin, L. Ven, N. Limam, R. Boutaba, B. Mathieu,
S. Moteau, and S. Tuffin, “A look behind the curtain: traffic classification
in an increasingly encrypted web,” in Proceedings of the ACM on
Measurement and Analysis of Computing Systems, vol. 5, no. 1. ACM
New York, NY, USA, 2021, pp. 1–26.

[2] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar et al., “The QUIC transport
protocol: Design and Internet-scale deployment,” in Proceedings of the
conference of the ACM special interest group on data communication,
2017, pp. 183–196.

[3] S. Xu, S. Sen, and Z. M. Mao, “CSI: Inferring mobile ABR video
adaptation behavior under HTTPS and QUIC,” in Proceedings of the
Fifteenth European Conference on Computer Systems, 2020, pp. 1–16.

[4] “Usage statistics of QUIC for websites,” accessed: May, 2023. [Online].
Available: https://w3techs.com/technologies/details/ce-quic

[5] J. Border, B. Shah, C.-J. Su, and R. Torres, “Evaluating QUIC’s per-
formance against performance enhancing proxy over satellite link,” in
Proceedings of the IEEE IFIP Networking Conference, 2020, pp. 755–
760.

[6] B. Anderson, A. Chi, S. Dunlop, and D. McGrew, “Limitless HTTP in
an HTTPS world: Inferring the semantics of the HTTPS protocol without
decryption,” in Proceedings of the Ninth ACM Conference on Data and
Application Security and Privacy, 2019, pp. 267–278.

[7] K. Jain and C.-J. Su, “Application characterization using transport pro-
tocol analysis,” Oct. 22 2019, US Patent 10,454,804.

[8] P. Zhan, L. Wang, and Y. Tang, “Website fingerprinting on early QUIC
traffic,” Computer Networks, vol. 200, p. 108538, 2021.

[9] V. Tong, H. A. Tran, S. Souihi, and A. Mellouk, “A novel QUIC traffic
classifier based on convolutional neural networks,” in Proceedings of the
IEEE Global Communications Conference (GLOBECOM), 2018, pp. 1–6.

[10] T. Mangla, E. Halepovic, M. Ammar, and E. Zegura, “Using session mod-
eling to estimate HTTP-based video QoE metrics from encrypted network
traffic,” IEEE Transactions on Network and Service Management, vol. 16,
no. 3, pp. 1086–1099, 2019.

[11] M. H. Mazhar and Z. Shafiq, “Real-time video quality of experience mon-
itoring for HTTPS and QUIC,” in Proceedings of the IEEE Conference
on Computer Communications (INFOCOM), 2018, pp. 1331–1339.

[12] A. Bentaleb, S. Harous et al., “Inferring quality of experience for
adaptive video streaming over HTTPS and QUIC,” in Proceedings of
the IEEE International Wireless Communications and Mobile Computing
(IWCMC), 2020, pp. 81–87.

[13] M. Kuehlewind and B. Trammell, “Manageability of the QUIC transport
protocol,” Internet Engineering Task Force, Internet-Draft draft-ietfquic-
manageability-06, 2020.

[14] J. Iyengar, M. Thomson et al., “QUIC: A UDP-based multiplexed and
secure transport,” Internet Engineering Task Force, Internet-Draft draft-
ietf-quic-transport-27, 2020.

https://w3techs.com/technologies/details/ce-quic

	Introduction
	System Architecture
	Input features
	QUIC header type
	QUIC packet length
	Packet arrival time
	Packet order and position

	Output metrics
	HTTP object level output
	QUIC connection level output


	Algorithm and Approaches
	Request estimation
	Response estimation
	Request-response matching
	Supporting modules
	Dynamic threshold of data packet length
	Auto-detection for MTU size
	RTT estimation


	Performance Evaluations
	Limitation and Future Work
	Conclusion
	References

